Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells

Identifieur interne : 001A31 ( Main/Repository ); précédent : 001A30; suivant : 001A32

Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells

Auteurs : RBID : Pascal:12-0397970

Descripteurs français

English descriptors

Abstract

In this paper we address the fundamental challenge of forming an efficient contact between the p-type a-Si:H layer and n-type TCO's as contact layers in amorphous/crystalline silicon heterojunction (SHJ) solar cells. We point out the capability of Suns-Voc measurements to give valuable insights into the formation of Schottky barriers and its influence on the solar cell fill factor FF. The influence of the a-Si:H(p) doping on the Schottky characteristic is shown for test structures and on device level. Test structures are used to probe the influence of various contact layers on the effective work function at the a-Si:H/contact layer interface. A very good correlation between the vacuum work function of different contact layers and the open-circuit voltage is observed for test structures. Therefore, we could demonstrate the work function mismatch between a-Si:H and ITO and a-Si:H and various metals as contact layers. For small area n-type silicon solar cells featuring an a-Si:H(p) rear emitter and a diffused front surface field (FSF), it is shown that by improving the carrier transport between the a-Si:H(p) and the contacting layer, ITO(n) or metal, FF above 80% can be obtained. Furthermore, we demonstrate that a TCO is not mandatory for the rear SHJ emitter, which simplifies the cell structure and allows for proper junction engineering. We obtained high internal rear side reflection with a single metal layer and an efficiency of 22.8% for these TCO-less SHJ emitter solar cells. As these solar cells feature FF of up to 81.5%, they clearly demonstrate the high FF potential of the silicon heterojunction which can be achieved by proper junction engineering.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0397970

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells</title>
<author>
<name sortKey="Bivour, Martin" uniqKey="Bivour M">Martin Bivour</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reichel, Christian" uniqKey="Reichel C">Christian Reichel</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hermle, Martin" uniqKey="Hermle M">Martin Hermle</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Glunz, Stefan W" uniqKey="Glunz S">Stefan W. Glunz</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0397970</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0397970 INIST</idno>
<idno type="RBID">Pascal:12-0397970</idno>
<idno type="wicri:Area/Main/Corpus">001737</idno>
<idno type="wicri:Area/Main/Repository">001A31</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous hydrogenated material</term>
<term>Amorphous material</term>
<term>Crystalline material</term>
<term>Doping</term>
<term>Fill factor</term>
<term>Forming</term>
<term>Heterojunction</term>
<term>Indium oxide</term>
<term>Internal reflection</term>
<term>Mismatching</term>
<term>Open circuit voltage</term>
<term>Performance evaluation</term>
<term>Schottky barrier</term>
<term>Silicon</term>
<term>Silicon solar cells</term>
<term>Solar cell</term>
<term>Tin addition</term>
<term>Work function</term>
<term>n type semiconductor</term>
<term>p type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire silicium</term>
<term>Formage</term>
<term>Semiconducteur type p</term>
<term>Matériau amorphe</term>
<term>Hétérojonction</term>
<term>Barrière Schottky</term>
<term>Cellule solaire</term>
<term>Facteur remplissage</term>
<term>Dopage</term>
<term>Travail sortie</term>
<term>Tension circuit ouvert</term>
<term>Désadaptation</term>
<term>Addition étain</term>
<term>Réflexion interne</term>
<term>Evaluation performance</term>
<term>Matériau amorphe hydrogéné</term>
<term>Semiconducteur type n</term>
<term>Silicium</term>
<term>Matériau cristallin</term>
<term>Oxyde d'indium</term>
<term>a-Si:H</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matériau amorphe</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper we address the fundamental challenge of forming an efficient contact between the p-type a-Si:H layer and n-type TCO's as contact layers in amorphous/crystalline silicon heterojunction (SHJ) solar cells. We point out the capability of Suns-V
<sub>oc</sub>
measurements to give valuable insights into the formation of Schottky barriers and its influence on the solar cell fill factor FF. The influence of the a-Si:H(p) doping on the Schottky characteristic is shown for test structures and on device level. Test structures are used to probe the influence of various contact layers on the effective work function at the a-Si:H/contact layer interface. A very good correlation between the vacuum work function of different contact layers and the open-circuit voltage is observed for test structures. Therefore, we could demonstrate the work function mismatch between a-Si:H and ITO and a-Si:H and various metals as contact layers. For small area n-type silicon solar cells featuring an a-Si:H(p) rear emitter and a diffused front surface field (FSF), it is shown that by improving the carrier transport between the a-Si:H(p) and the contacting layer, ITO(n) or metal, FF above 80% can be obtained. Furthermore, we demonstrate that a TCO is not mandatory for the rear SHJ emitter, which simplifies the cell structure and allows for proper junction engineering. We obtained high internal rear side reflection with a single metal layer and an efficiency of 22.8% for these TCO-less SHJ emitter solar cells. As these solar cells feature FF of up to 81.5%, they clearly demonstrate the high FF potential of the silicon heterojunction which can be achieved by proper junction engineering.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>106</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 2nd International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2012)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BIVOUR (Martin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>REICHEL (Christian)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HERMLE (Martin)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GLUNZ (Stefan W.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GORDON (Ivan)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>11-16</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000502018300030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0397970</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper we address the fundamental challenge of forming an efficient contact between the p-type a-Si:H layer and n-type TCO's as contact layers in amorphous/crystalline silicon heterojunction (SHJ) solar cells. We point out the capability of Suns-V
<sub>oc</sub>
measurements to give valuable insights into the formation of Schottky barriers and its influence on the solar cell fill factor FF. The influence of the a-Si:H(p) doping on the Schottky characteristic is shown for test structures and on device level. Test structures are used to probe the influence of various contact layers on the effective work function at the a-Si:H/contact layer interface. A very good correlation between the vacuum work function of different contact layers and the open-circuit voltage is observed for test structures. Therefore, we could demonstrate the work function mismatch between a-Si:H and ITO and a-Si:H and various metals as contact layers. For small area n-type silicon solar cells featuring an a-Si:H(p) rear emitter and a diffused front surface field (FSF), it is shown that by improving the carrier transport between the a-Si:H(p) and the contacting layer, ITO(n) or metal, FF above 80% can be obtained. Furthermore, we demonstrate that a TCO is not mandatory for the rear SHJ emitter, which simplifies the cell structure and allows for proper junction engineering. We obtained high internal rear side reflection with a single metal layer and an efficiency of 22.8% for these TCO-less SHJ emitter solar cells. As these solar cells feature FF of up to 81.5%, they clearly demonstrate the high FF potential of the silicon heterojunction which can be achieved by proper junction engineering.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cellule solaire silicium</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Silicon solar cells</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Formage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Forming</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Conformado</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Semiconducteur type p</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>p type semiconductor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Semiconductor tipo p</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Matériau amorphe</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Amorphous material</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Material amorfo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Barrière Schottky</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Schottky barrier</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Barrera Schottky</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Travail sortie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Work function</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Función de trabajo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Désadaptation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Mismatching</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Desadaptación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Réflexion interne</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Internal reflection</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Reflexión interna</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Matériau amorphe hydrogéné</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Amorphous hydrogenated material</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Material amorfo hidrogenado</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Semiconducteur type n</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>n type semiconductor</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Semiconductor tipo n</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>a-Si:H</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>310</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>SiliconPV 2012 International Conference on Crystalline Silicon Photovoltaics</s1>
<s2>2</s2>
<s3>Leuven BEL</s3>
<s4>2012-04-03</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001A31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0397970
   |texte=   Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024